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data
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ABSTRACT
Kernel density estimation (KDE) is a classic approach for spatial
point pattern analysis. In many applications, KDE with spatially
adaptive bandwidths (adaptive KDE) is preferred over KDE with
an invariant bandwidth (fixed KDE). However, bandwidths deter-
mination for adaptive KDE is extremely computationally intensive,
particularly for point pattern analysis tasks of large problem sizes.
This computational challenge impedes the application of adaptive
KDE to analyze large point data sets, which are common in this big
data era. This article presents a graphics processing units (GPUs)-
accelerated adaptive KDE algorithm for efficient spatial point pat-
tern analysis on spatial big data. First, optimizations were
designed to reduce the algorithmic complexity of the bandwidth
determination algorithm for adaptive KDE. The massively parallel
computing resources on GPU were then exploited to further speed
up the optimized algorithm. Experimental results demonstrated
that the proposed optimizations effectively improved the perfor-
mance by a factor of tens. Compared to the sequential algorithm
and an Open Multiprocessing (OpenMP)-based algorithm lever-
aging multiple central processing unit cores for adaptive KDE,
the GPU-enabled algorithm accelerated point pattern analysis
tasks by a factor of hundreds and tens, respectively. Additionally,
the GPU-accelerated adaptive KDE algorithm scales reasonably
well while increasing the size of data sets. Given the significant
acceleration brought by the GPU-enabled adaptive KDE algorithm,
point pattern analysis with the adaptive KDE approach on large
point data sets can be performed efficiently. Point pattern analysis
on spatial big data, computationally prohibitive with the sequen-
tial algorithm, can be conducted routinely with the GPU-acceler-
ated algorithm. The GPU-accelerated adaptive KDE approach
contributes to the geospatial computational toolbox that facili-
tates geographic knowledge discovery from spatial big data.
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1. Introduction

Kernel density estimation (KDE) is a classical approach to spatial point pattern analysis
by identifying interesting ‘hotspots’ of point events (Diggle 1985, Fotheringham et al.
2000, Burt et al. 2009). It has been widely used in many application domains such as
spatial epidemiology, crime pattern analysis, ecology, biology, traffic accidents analysis,
etc. (Worton 1989, Gatrell et al. 1996, Xie and Yan 2008, Law et al. 2009). The basic
assumption of KDE is that an event occurred at a given location (i.e. Xi) could occur at
another location (i.e. x) at a lower probability and the probability decreases as the
distance from Xi to x (i.e. di) increases. This probability can be described by a function,
referred to as the kernel function K �ð Þ, whose value (the probability) is tied to di. A
typical function for K �ð Þ is the Gaussian kernel (adopted in this article) (Silverman 1986):

K
x � X ij j
hi

� �
¼ 1

2π
e
� x�Xij j2

2hi
2 ; (1)

where x � X ij j is di (the distance between the two points) and hi is a smoothing
parameter called bandwidth that determines how quickly the probability decreases as
di increases. KDE then estimates the probability density at any location x by summing up
density contribution from all sample points (Diggle 1985, Fotheringham et al. 2000):

f̂ xð Þ ¼ 1
n

Xn

i¼1

1
h2i

K
x � X ij j
hi

� �
ei; (2)

where f̂ xð Þ is the estimated density at location x, hi is the bandwidth for sample point Xi,
n is the total number of sample points and ei is an edge correction factor for Xi which is
necessary for obtaining unbiased density estimates (Diggle 1985, Baddeley et al. 2015).
The choice of the bandwidths is critical to KDE (Epanechnikov 1969, Silverman 1986).
The bandwidths can either be invariant at sample points (fixed KDE) (Silverman 1986,
Brunsdon 1995, Jones et al. 1996, Miecznikowski et al. 2010) or vary spatially across
sample points (adaptive KDE) (Breiman et al. 1977, Silverman 1986, Worton 1989, Jones
1990, Brunsdon 1995, Sain et al. 1996, Shi 2010).

In many applications, adaptive KDE is preferred over fixed KDE. Adaptive KDE is
particularly useful for analyzing human geographical data (e.g. retail store locations)
where most events (i.e. locations) occur in the most densely populated areas and it can
discern probability density variations in these areas (Breiman et al. 1977, Worton 1989,
Brunsdon 1995, Fotheringham et al. 2000). It is also widely used for analyzing popula-
tion-related events such as disease, crime and health-care clinics because it can produce
more meaningful density estimates by considering varying population distribution
across space (Gatrell et al. 1996, Carlos et al. 2010, Shi 2010).

Determining the spatially adaptive bandwidths is the key step while applying adap-
tive KDE in spatial point pattern analysis. Following the principle that sample points in
areas of low density should have greater bandwidth values and sample points in areas of
high density should have smaller bandwidth values, Breiman et al. (1977) proposed to
set bandwidths proportional to nearest neighbor distances. This implies the dependence

hi / f X ið Þ�1 where f X ið Þ is the true density at sample location X i (Abramson 1982).

Abramson (1982) showed that the dependence was too strong and suggested hi /
f X ið Þ�0:5 instead. Silverman (1986) proposed to represent the bandwidths as
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hi ¼ hλi; (3)

where h is a global bandwidth and λi is a local smoothing parameter given by

λi ¼
~f X ið Þ
g

( )�α

; (4)

where α is a non-negative constant, ~f X ið Þ is a pilot estimate of the density at sample
point X i and g is the geometric mean of the density values at the n sample points and

hence log gð Þ ¼ 1
n

Pn
i¼1 log

~f X ið Þ. ~f X ið Þ is estimated using fixed KDE with a prescribed
bandwidth value h0 (Worton 1989). Three parameters need to be determined to com-
pute spatially adaptive bandwidth for adaptive KDE using Equations (3) and (4), includ-
ing: the global bandwidth h, the bandwidth h0 used in pilot density estimation and α. No
objective procedures have been developed to select h0, although h can be determined
using cross-validation on sample points if α is specified a priori (Silverman 1986). In
many cases, one often simply subjectively specifies values for the two bandwidth
parameters. As for α, Abramson (1982) and Silverman (1986) suggested that 0:5 is
appropriate. However, setting α ¼ 0:5 is not an objective decision made based upon
the data (i.e. sample points) either.

Brunsdon (1995) proposed an algorithm to objectively determine both α and h using
sample points data. The ‘optimal’ values of α and h are calculated iteratively using cross-
validation on the sample points based on the maximum likelihood criterion. In addition,
the algorithm uses h in pilot density estimation in each iteration (i.e. h0 = h) instead of
choosing an arbitrary bandwidth for pilot density estimation. Note that although cross-
validation can be used in bandwidth selection for both fixed KDE and adaptive KDE
(Silverman 1986, Brunsdon 1995, Jones et al. 1996, Sain et al. 1996), using Brunsdon’s
algorithm to determine the optimal adaptive bandwidths involves searching for the
optimal values of α and h simultaneously in a two-dimensional search space while only a
one-dimensional search space is needed to determine the optimal fixed bandwidth h.
Correspondingly, Brunsdon’s algorithm for adaptive KDE is more computationally
demanding than those for fixed KDE.

Determining the spatially adaptive optimal bandwidths for adaptive KDE using
Brunsdon’s algorithm is very computationally challenging, particularly on point events
data of large size. Runtime of Brunsdon’s algorithm increases rapidly as the number of
sample points increases (see Sections 2 and 3 for details). Spatial big data are now
becoming ubiquitous as location-based services, social media, volunteered geographic
information, citizen science projects, etc. are producing a huge amount of point data on
a daily basis (Goodchild 2007, Wood et al. 2011, Shekhar et al. 2012, Huang and Wong
2015, Zhu et al. 2015, Longley and Adnan 2016). Whilst some time-critical patterns in
these data are of interest (e.g. spatial pattern of real-time tweeting), applying adaptive
KDE for point pattern analysis on such spatial big data is prohibitively time-consuming.
This gap needs to be filled in order to enable efficient point pattern analysis on spatial
big data (Zhang et al. 2016).

Under the umbrella of high-performance computing, computing resources on dis-
tributed devices have been leveraged to address the computational challenges asso-
ciated with geoprocessing and spatial analysis of big data through cluster computing,
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grid computing, heterogeneous computing or cloud computing (Schadt et al. 2010,
Wang 2010, Wright and Wang 2011, Yang et al. 2011, Shi et al. 2014). Multi-core central
processing units (CPUs) and many-core graphics processing units (GPUs) on a single
computer or on distributed computers are typical computing resources that have been
exploited to accelerate geospatial applications (e.g. Guan and Clarke 2010, Qin et al.
2014, Tang et al. 2015). A modern GPU has hundreds of cores that can run thousands of
threads in parallel, reaching a peak computing performance much higher than most
advanced CPUs (Kirk and Hwu 2012, NVIDIA 2016). GPUs have been playing a dominant
role in leveraging many-core computing architecture for general purpose computation
and have been introduced to the GIScience community to greatly accelerate various
geospatial analysis algorithms such as viewshed analysis (Zhao et al. 2013, Osterman
et al. 2014), quad-tree construction on rasters (Zhang and You 2013), cartogram con-
struction (Tang 2013), point pattern analysis (Tang et al. 2015), cellular automata model
(Guan et al. 2016) and polygon rasterization (Zhou et al. 2016).

In this article, we propose to leverage GPUs to address the computational challenge
associated with determining the spatially adaptive optimal bandwidths for adaptive KDE.
Although GPUs have been used for accelerating many geospatial algorithms, using GPUs
to speed up spatial point pattern analysis in particular still remains at an early stage
(Tang et al. 2015). A GPU-enabled Ripley’s K function for massively parallel point pattern
analysis was developed by Tang et al. (2015). Using the GPU-enabled K function for point
pattern analysis, the acceleration factor can reach up to about 50 and 1, 501 for a single
GPU and 50 GPUs, respectively (Tang et al. 2015). As for GPU-accelerated KDE in general,
Michailidis and Margaritis (2013) implemented univariate and multivariate KDE with the
support of GPUs using the Compute Unified Device Architecture (CUDA) programming
model. However, these are fixed KDE implementations using only prescribed bandwidth
that involve no bandwidth selection procedures. Andrzejewski et al. (2013) proposed
efficient GPU versions of bandwidth selection algorithms for univariate and multivariate
KDE. Yet the bandwidth selection algorithms are only for finding the optimal band-
widths for each individual multivariate dimension. While the optimal bandwidths vary
across different variable dimensions, in each dimension sample points still have the
same fixed bandwidth. The algorithms thus are useful only for determining optimal
bandwidth for fixed KDE. They did not address the computation challenge to determine
optimal bandwidths for adaptive KDE.

Edge correction is necessary to obtain unbiased density estimations for the KDE
approach to spatial point pattern analysis (Diggle 1985, Baddeley et al. 2015).
However, neither Michailidis and Margaritis (2013) nor Andrzejewski et al. (2013) imple-
mented edge correction in their GPU-based KDE algorithms, as the algorithms were
intended for density estimation in multivariate space rather than over geographic space.
The original algorithm developed by Brunsdon (1995), though specifically designed for
density estimation over geographic space, did not implement edge correction either. In
this article, we supplement Brunsdon’s algorithm with edge correction implementation.

This article presents a GPU-accelerated adaptive KDE approach for efficient spatial
point pattern analysis on large data sets. Brunsdon’s algorithm (edge correction enabled)
for determining the spatially adaptive optimal bandwidths was accelerated by exploiting
massively parallel computing resources on the GPU. Details of Brunsdon’s algorithm are
provided in Section 2. Optimizations for Brunsdon’s algorithm are presented in Section 3.
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The design and implementation of the GPU-enabled adaptive KDE approach are
described in Section 4. The effectiveness of the optimizations and the correctness,
efficiency and scalability of the GPU-enabled adaptive KDE approach are then evaluated
with experiments in Section 5. Conclusions are drawn in Section 6.

2. Determining spatially adaptive optimal bandwidths for adaptive KDE

Brunsdon’s algorithm determines the spatially adaptive optimal bandwidths by finding
the α; hð Þ values that maximize the likelihood (probability) of observing the n sample
points. This likelihood is a product of the probabilities of observing each sample point,
which is estimated from the other n – 1 sample points using adaptive KDE with certain
α; hð Þ values to compute bandwidths. The likelihood of observing the n sample points
differs under different α; hð Þ values. Brunsdon’s algorithm adopts a search routine to find
the optimal α; hð Þ values that maximize this likelihood. The optimal α; hð Þ values are
then used to compute spatially adaptive bandwidths for adaptive KDE to estimate a
probability density surface over the study area (Hooke and Jeeves 1961, Brunsdon 1995).

The flow chart of Brunsdon’s algorithm is shown in Figure 1. Starting with some initial
α; hð Þ values, initial step values Δα;Δhð Þ and prescribed step threshold values (�α; �hÞ, the
algorithm goes through a series of iterations. In this article, the initial α = α0 = 0.5, initial
h = h0 where h0 is the ‘rule-of-thumb’ bandwidth (Fotheringham et al. 2000, p149), initial
Δα = 0.1, initial Δh = h0/10, ϵα = Δα/20 = 0.005, and ϵh = Δh/20. In each iteration, α; hð Þ
values are slightly adjusted towards the maximum likelihood direction. Within each
iteration, the following steps and procedures are involved (Figure 1).

Step 1: Compute edge correction factors for sample points under the current value of h.
Edge correction factor for a sample point is the reciprocal of the kernel mass inside the
study area (the kernel is centered at that sample point) (Diggle 1985, Baddeley et al. 2015)
and depends on the bandwidth at that sample point. This is because the bandwidth
determines the spread of the kernel centered at that sample point. Given an h, edge
correction factor ei for sample point X i is computed using the equation below (eiis 1.0 if
the kernel mass is completely within the study area) (Diggle 1985, Baddeley et al. 2015):

1
ei
¼

ð
v2W

K
X i � vj j

h

� �
dv ffi

Xm

j¼1
K

X i � cj
�� ��

h

� �
ΔA; (5)

where v is a point in study area W, cj is the center point of the jth raster cell in the study
area, ΔA is the area of a raster cell and m is the total number of cells. Note that here the
bandwidth h is the same for all sample points.

Step 2: Compute pilot density estimates at sample points under the current value of h.
The pilot density at a sample point is estimated from sample points including the foci
sample point itself (referred to as inclusive density) using fixed KDE. The pilot density
estimation at sample point X i is computed using the equation below:

~f X ið Þ ¼ 1
n

Xn

j¼1

1
h2

K
X i � X j

�� ��
h

� �
ej; (6)
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where ~f X ið Þ is the pilot density estimate at sample point X i. Notice that the foci sample
point itself is included in density estimation to avoid zero density at the foci sample
point, and that the bandwidth h is the same for all sample points.

Step 3: Compute spatially adaptive bandwidths for sample points following Equations (3)
and (4), under the current α; hð Þ values and the pilot density estimates computed in step 2.

Step 4: Update (re-compute) edge correction factors for sample points using the equa-
tion below, given the spatially adaptive bandwidths computed in step 3:

1
ei
¼

ð
v2W

K
X i � vj j
hi

� �
dv ffi

Xm

j¼1
K

X i � cj
�� ��

hi

� �
ΔA (7)

This equation differs from Equation (5) as the bandwidths hi vary across sample points.

Figure 1. Flow chart of the sequential Brunsdon’s algorithm for adaptive KDE.
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Step 5: Compute the probability of observing each sample point. This probability is
estimated from sample points excluding the foci sample point (referred to as exclusive
density) using adaptive KDE, which is computed using the equation below given the
spatially adaptive bandwidths computed in step 3 and the edge correction factors
computed in step 4:

~f � X ið Þ ¼ 1
n� 1

Xn

j¼1; j � i

1

hj
2 K

X i � X j

�� ��
hj

� �
ej; (8)

where ~f � X ið Þ is the probability of observing sample point X i given the other n – 1 sample
points. This equation differs from Equation (6) in that the foci sample point is excluded
in density estimation to prevent the algorithm from directly returning h = 0 as the
optimal bandwidth (Brunsdon 1995), and that the bandwidths hj vary across sample
points.

Step 6: Compute the Log-likelihood of observing the n sample points under the current
α; hð Þ values:

L α; hð Þ ¼
Xn

i¼1
log~f � X ið Þ; (9)

in which L α; hð Þ is the Log-likelihood and ~f � X ið Þ is the probability of observing sample
point X i which was computed in step 5. Computing Log-likelihood instead of likelihood
avoids potential numerical issues that might arise when the product of the probability
values is very small.

Before proceeding to the next step, follow steps 1 through 6 to compute L(α + Δα, h),
L(α – Δα, h), L(α + Δα, h + Δh) and L(α – Δα, h – Δh) – the Log-likelihood values
corresponding to the neighbors of the α; hð Þ values in the two-dimensional search
space.

Step 7: Find the local maximum Log-likelihood Lmax among L(α + Δα, h), L(α – Δα, h),
L(α, h), L(α + Δα, h + Δh) and L(α – Δα, h – Δh). Suppose Lmax ¼ L α0; h0ð Þ where α0; h0ð Þ are
the values corresponding to the local maximum (this ensures that the algorithm always
proceeds towards the global maximum likelihood direction in the search space).

Then, the algorithm evaluates whether to stop iteration. If Lmax � L α; hð Þ, update the
current α; hð Þ with α0; h0ð Þ and continue to the next iteration. Otherwise, the step values
Δα;Δhð Þ are decreased by half and checked against their thresholds �α; �h. Iteration stops
if Δα<�α and Δh<�h, or if the number of iterations exceeds the predefined threshold (30
iterations in this article). Otherwise, it continues to the next iteration.

Once iteration stops (the algorithm converges or the number of iterations exceeds
the predefined threshold), the optimal α; hð Þ values that maximize the likelihood of
observing the n sample points are determined. The optimal α; hð Þ values are then used
to compute the spatially adaptive bandwidths (Equations (3) and (4)) and the edge
correction factors (Equation 7) for adaptive KDE to estimate a probability density surface
over the study area (Equation 2).
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3. Optimizations

Spatial point pattern analysis using Brunsdon’s algorithm for point pattern analysis
on big point events data sets over large areas at fine spatial resolution would be
extremely computationally demanding. The algorithmic complexity of a naive imple-
mentation of Brunsdon’s algorithm is O nmþ n2ð Þ. The O nmð Þ part is dominated by
the computation involved in computing edge correction factors as it is repeated
many time across the iterations (computing density surface over the study area is
also O nmð Þ but it is only performed once). The O n2ð Þ part reflects the computation
involved in estimating density values at the sample points across the iterations. Run
time of the algorithm would increase quadratically as the number of sample points n
increases, or linearly as the number of cells m in the study area increases. It is thus
desirable to optimize the algorithm for performance. We present two optimizations
for Brunsdon’s algorithm to reduce its complexity before leveraging GPU to speed up
the algorithm.

3.1. A heuristic to avoid re-computing edge correction factors

The first optimization is based on the heuristic that only edge correction factors of
sample points close to the study area boundary need to be re-computed when updating
bandwidths. Sample points far away from the study area boundary should have a
constant edge correction factor very close to 1.0 (i.e. the kernel mass is almost com-
pletely within the study area). If such sample points can be identified, the cost of re-
computing edge correction factors for them can be avoided.

This optimization was implemented as the following. For each sample point X i, its
closest distance to the study area boundary di is computed. Later, when computing
edge correction factor for X i (Equations (5) or (7)), the bandwidth hi is compared against
di. If di is greater than C× hi (C is a constant), a value of 1.0 is assigned to ei (edge
correction factor of this sample point). Otherwise, ei is computed but the computation is
restricted to raster cells that are within C× hi distance from the center sample point
instead of all cells in the study area. A greater C will produce more accurate edge
correction factors but with more computation. At a location that is 3× bandwidth
distance from the center sample point, the density value (height of the Gaussian kernel
surface) is only 1.1% of the height at the center point. The kernel mass (volume under
the kernel surface; reciprocal of the edge correction factor of the center point)
(Equations (5) and (7)) over the 3× bandwidth radius circular neighborhood of the
center point is 98.9% of the total kernel mass. Since density value of the Gaussian kernel
is very small and negligible at a location that is beyond 3× bandwidth away from the
center sample point and edge correction factor computed over the 3× bandwidth radius
circular neighborhood is very close to the true value that needs an infinite support to
compute, we consider 3 is an appropriate value for C as it was done in Brunsdon (1995).
This optimization reduces the O nmð Þ part of the complexity of Brunsdon’s algorithm to
about O n

ffiffiffiffi
m

p� �
.
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3.2. Spatial indexing to speed up density estimation at sample points

The second optimization assumes that a sample point Xi contributes only to density at
locations that are within C× hi distance from Xi (its contribution to locations out of the
radius of C× hi is ignored and set to zero). Correspondingly, when computing density at
a location, we only need to integrate sample points that are within C× hi distance from
this location (note that hi is the bandwidth of a sample point and different sample points
have different bandwidths). Therefore, when computing density values at a given
sample point (Equations (6) or (8)), the performance can be improved if we can quickly
locate the sample points within the circular neighborhood of this point without check-
ing all sample points.

A kd-tree spatial indexing data structure (Bentley and Friedman 1979, Kakde 2005)
was utilized to implement this optimization. A two-dimensional kd-tree (x, y coordi-
nates are the two dimensions) was built on the sample points. It was then used to
speed up range search to locate sample points within a certain distance from a foci
sample point. Note that here the way to compute density at a sample point Xi is
different from but still equivalent to Equations (6) or (8). For each sample point Xi,
kd-tree is first used to find all sample points within its C× hi radius circular neighbor-
hood; then, the contribution of Xi to the density at each of these neighboring sample
points is computed (Equation (1)) and added to the accumulative density at the
respective sample point. After performing the above two steps on all sample points,
the density at each sample point is computed. The cost of building a kd-tree on n
sample points is O n log nð Þ (Bentley and Friedman 1979, Kakde 2005), but it is
amortized since the kd-tree is built once and used later in every range search. For
a sample point, the complexity of range search with a kd-tree is O

ffiffiffi
n

p þ K
� �

where K
is the number of points returned (Bentley and Friedman 1979, Kakde 2005). This
optimization reduces the O n2ð Þ part of the complexity of Brunsdon’s algorithm to
around O n

ffiffiffi
n

p� �
.

4. GPU-accelerated adaptive KDE for spatial point pattern analysis

4.1. GPU-parallel programming model

Parallel computation on a GPU is achieved by invoking kernels. A kernel is a function
executed concurrently by all threads running on a GPU. Thread is the basic computing
unit on GPU. The total number of threads allowed on a modern GPU can be as many as
millions or even billions. Threads are organized into blocks, which in turn are further
organized into one-, two- or three-dimensional grids. Execution configuration refers to
block size (i.e. number of threads per block) and grid size (i.e. number of rows and
columns of blocks per grid in two-dimensional grids) and needs to be specified before
launching a kernel. All threads on a GPU can read and write global GPU memory. Data
processed on GPU need to be transferred from host memory (e.g. CPU-side memory) to
global memory of the GPU first before they can be manipulated by GPU threads. At the
same time, data in GPU global memory can be transferred back to the host memory for
further processing (NVIDIA 2016).
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Each thread has a unique serial thread identifier (i.e. thread ID). Thread ID is the key
for assigning a partitioned computing task to a corresponding thread. Upon kernel
invocation, all threads will concurrently execute the kernel. Each thread carries out
computation specified in the kernel on different portions of the data (NVIDIA 2016).
For example, when executing a kernel on GPU to compute edge correction factors,
thread 0 computes the edge correction factor for sample point 0, thread 1 computes the
edge correction factors for sample point 1, so on so forth. Threads are executed on
physical GPU devices in ‘warps’ where each warp is a group of threads (e.g. 32 threads
per warp for most current GPUs). In this way, a computing task can be carried out on a
large number of GPU threads in a massively parallel fashion (Luebke 2008, Nickolls et al.
2008).

4.2. Design of GPU-accelerated adaptive KDE algorithm

The GPU-enabled adaptive KDE algorithm requires the cooperation of CPU-side and
GPU-side routines. Kernels were implemented for the computation tasks involved in an
iteration of Brunsdon’s algorithm. A kernel was also implemented for computing adaptive
KDE over the study area (i.e. computing density surface). The CPU-side routine is
responsible for the logical control of the algorithm, and it invokes kernels (i.e. the
GPU-side functions) to perform the computationally demanding tasks on GPU threads
in a massively parallel fashion (Figure 2).

Data for the GPU-enabled adaptive KDE algorithm are first loaded into the host
memory of CPU environment and then transferred to the global memory of GPU (device
memory) for parallel computation. The CPU-side then invokes kernels to perform com-
putation tasks on the GPU using data in device memory. The GPU-enabled adaptive KDE
algorithm is designed to minimize the data exchange between host memory and device
memory as it is an expensive operation. The kernels perform computation tasks with
input data in device memory and write output to device memory. A following launched
kernel can take the output of a previously completed kernel as input (which is still on
device memory). There is little data transfer between host and device across kernel
invocations. Results on device memory are transferred back to host memory only once
upon the completion of the last kernel.

4.3. Implementation

The GPU-enabled adaptive KDE algorithm was implemented using CUDA version 7.0 in
the C/C++ programming language (NVIDIA 2016). The CPU-side control routine loads
the data of sample points (i.e. coordinates) and study area (i.e. a raster indicating study
area extent) from external files into host memory. It then computes the distance from
each sample point to the study area boundary, sorts sample points on the distance to
boundary and builds a kd-tree spatial indexing data structure on the sample points. The
control routine then allocates space in device memory using cudaMalloc() and transfers
the sorted sample points, study area raster and kd-tree to device memory using
cudaMemCpy(). It also allocates space in device memory for necessary ancillary data
structures (e.g. an array to hold edge correction factors). The kernels running on GPU
threads dynamically update these ancillary data structures while running the algorithm.
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The final densities computed at cells are copied back to host memory from device
memory using cudaMemCpy(). The major kernels implemented for the GPU-enabled
adaptive KDE algorithm are presented as follows.

4.3.1. Kernel for computing edge correction factors on GPU
Computing the edge correction factor for a sample point is independent from any other
sample points. The computation for a sample point is dispatched to a specific GPU
thread based on sample point ID and thread ID. A kernel was implemented to compute
edge correction factors for sample points (Figure 3). Upon kernel invocation, edge
correction factors of all sample points are computed ‘concurrently’ on GPU threads.
The optimization described in Section 3.1 was implemented in this kernel, which was
used for computing edge correction factors with both fixed and adaptive bandwidths.

It is worth noting that the execution time of a warp is determined by the slowest
thread in that warp as GPU threads are executed in warps. If the workload of the threads
in a warp varies wildly (i.e. thread divergence), warp execution will be slowed down.
When computing edge correction factors, threads that correspond to sample points
closer to the boundary likely have heavier load than threads processing sample points
farther away from the boundary. This causes thread divergences if the distances to the

Figure 2. Flow chart of the GPU-enabled Brunsdon’s algorithm for adaptive KDE.
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boundary from sample points corresponding to threads in a warp vary significantly. In
this article, the sample points are pre-sorted on distances to the boundary. Threads in
the same warp have approximately the same workload, and therefore such potential
thread divergences are mitigated.

Execution configuration for launching this kernel was determined using:

gridDim:x ¼ gridDim:y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N blocks

pl m
; (10)

in which gridDim:x and gridDim:y are the number of rows and columns of blocks in a
grid, and

N blocks ¼ n=THREADS PER BLOCKd e; (11)

where N_blocks is the total number of blocks. n is the number of sample points,
THREADS PER BLOCK is the number of threads per block (usually it is a multiple of 32
and no greater than 1024) and �d e is a ceiling function. The calculated edge correction

Algorithm 1: Compute edge correction factors for sample points
1 function CalcEdgeCorrectionFactors (dPoints, dHs, dRaster, dEdgefactors)

Input : Sample points dPoints
Input : Bandwidths for sample points dHs
Input : Study area raster dRaster
Output: Edge correction factors for sample points dEdgefactors

2 tid = (blockIdx.y ∗ gridDim.y + blockIdx.x) ∗ blockDim.x + threadIdx.x;
3 h = dHs[tid];
4 cellSize = dRaster.cellSize;
5 if tid ≥ dPoints.numberOfPoints then
6 return;
7 end
8 if dPoints.distances[tid] ≥C*h then
9 dEdgefactors[tid] = 1.0;

10 return;
11 else
12 pX = dPoints.xCoordinates[tid];
13 pY = dPoints.yCoordinates[tid];
14 rowLower=YCOORD TO ROW(pY+C*h);
15 rowUpper=YCOORD TO ROW(pY-C*h);
16 colLower=XCOORD TO COL(pX-C*h);
17 colUpper=XCOORD TO COL(pX+C*h);
18 mass=0.0;
19 for row in rowLower : rowUpper do
20 for col in colLower : colUpper do
21 val = dRaster.elements[row][col];
22 if val �= dRaster.noDataV alue then
23 cellX=COL TO XCOORD(col);
24 cellY=ROW TO YCOORD(row);
25 d=dDistance(pX,pY,cellX,cellY);
26 mass+=dGaussianKernel(h,d)*cellSize*cellSize;
27 end

28 end
29 end
30 dEdgefactors[tid] = 1.0/mass;
31 end

Figure 3. Pseudo-code of the kernel for computing edge correction factors for sample points.
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factors are saved in device memory and used by other kernels that are launched later
(e.g. computing density estimates at sample points).

4.3.2. Kernel for computing density estimates at sample points on GPU
A kernel that implemented the optimization described in Section 3.2 was used to compute
inclusive density estimates at sample points (Figure 4). The computation associated with a
sample point (i.e. find sample points that are no more than C times its bandwidth using
kd-tree, and then compute its contribution to the inclusive densities at these sample
points) is dispatched to a corresponding GPU thread. Note that the atomic operation
atomicAdd is used to add the density contribution of a sample point to the cumulative
densities of other sample points. It serializes the updates of multiple threads on density
estimate of the same sample point. Although it may introduce extra overhead, this is
necessary for the parallel algorithm to obtain correct density estimates. By the completion
of this kernel, inclusive density estimates at all sample points are computed. Execution
configuration for launching this kernel was also determined using Equations (10) and (11).
The computed inclusive densities were later used in the kernel for computing spatially
adaptive bandwidths (this simple kernel is not presented here due to length limit).

Another kernel was implemented to compute the exclusive densities by subtracting the
density contribution of a sample point to itself from the inclusive density at that point. The
computed exclusive densities were later used in a kernel for computing likelihood of the
sample points. These two simple kernels were not presented here due to length limit.

Algorithm 2: Compute density estimates at sample points
1 function CalcDensityAtPoints (dKdtree, dPoints, dHs, dEdgefactors, dDensity)

Input : Kd-tree spatial indexing data structure dKdtree
Input : Sample points dPoints
Input : Bandwidths for sample points dHs
Input : Edge correction factors for sample points dEdgefactors
Output: Density estimates (initialized with zeros) at sample points dDensity

2 tid = (blockIdx.y ∗ gridDim.y + blockIdx.x) ∗ blockDim.x + threadIdx.x;
3 h = dHs[tid];
4 cellSize = dRaster.cellSize;
5 if tid ≥ dPoints.numberOfPoints then
6 return;
7 end
8 pX = dPoints.xCoordinates[tid];
9 pY = dPoints.yCoordinates[tid];

10 h = dHs[tid];
11 e = dEdgefactors[tid];
12 query = Point(pX, pY );
13 range = C ∗ h;
14 dRangeSearch(dKdtree, query, range, retNbrs, retIdxs, retDists);
15 for i in 0 : retNbrs-1 do
16 idx = retIdxs[i];
17 d = retDists[i];
18 g = dGaussianKernel(h, d) ∗ e;
19 atomicAdd(dDensity[idx], g);
20 end
21

Figure 4. Pseudo-code of the kernel for computing inclusive density estimates at sample points.
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4.3.3. Kernel for computing density surface on GPU
Computing density estimates at each cell in the study area requires two nested traver-
sals. The outer traversal goes through each cell in the study area. For each cell traversed,
another inner traversal goes over all sample points to compute the density contribution
from each sample point to the density at that cell (Figure 5). The computation associated
with computing density at a cell is dispatched to a corresponding GPU thread.

Execution configuration for launching this kernel was determined in a similar way as
using Equations (10) and (11), with the only difference that one needs to replace n (i.e.
number of points) with m (i.e. number of cells) in Equation (11). Upon the completion of
this kernel, computed densities at cells in device memory were copied back to host
memory and were written to an external file by the CPU-side routine.

5. Experiments

5.1. Experiment design

5.1.1. Overall design
Experiments were designed to evaluate three aspects of the implemented adaptive
KDE algorithm for spatial point pattern analysis: correctness, effectiveness of the

Algorithm 3: Compute density surface
1 function CalcDensitySurface (dPoints, dHs, dEdgefactors, dRaster)

Input : Sample points dPoints
Input : Bandwidths for sample points dHs
Input : Edge correction factors for sample points dEdgefactors
Output: Study area raster dRaster

2 tid = (blockIdx.y ∗ gridDim.y + blockIdx.x) ∗ blockDim.x + threadIdx.x;
3 nRows=dRaster.nRows;
4 nCols=dRaster.nCols;
5 if tid ≥ nRows ∗ nCols then
6 return;
7 end
8 row=tid/nCols;
9 col=tid-row*nCols;

10 noDataValue=dRaster.noDataValue;
11 if dRaster.elements[row][col]==noDataValue then
12 return;
13 end
14 cellX=COL TO XCOORD(col);
15 cellY=ROW TO YCOORD(row);
16 density=0.0;
17 for i in 0 : dPoints.numberOfPoints-1 do
18 pX = dPoints.xCoordinates[i];
19 pY = dPoints.yCoordinates[i];
20 h = dHs[i];
21 e = dEdgefactors[i];
22 d = dDistance(pX, pY, cellX, cellY );
23 density+ = dGaussianKernel(h, d) ∗ e;
24 end
25 dRaster.elements[row][col] = density;
26

Figure 5. Pseudo-code of the kernel for computing density estimates over the study area.
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optimizations, and efficiency and scalability of the GPU-parallel algorithm. For compre-
hensive evaluations, besides the GPU-parallel algorithm implemented as described in
Section 4, a sequential version of the algorithm that runs on a single CPU core and an
Open Multi-Processing (OpenMP)-parallel version of the algorithm that runs on multiple
CPU cores were also implemented. Each algorithm version was implemented at three
different optimization levels: no optimization (i.e. naive implementation), partial optimi-
zation (avoiding re-computing edge correction factors) and full optimization (avoiding
re-computing edge correction factors plus using kd-tree to speed up density estimation
at sample points). Moreover, each algorithm version was augmented to support three
modes of KDE: fixed KDE with bandwidth determined using ‘rule-of-thumb’ algorithm
(Fotheringham et al. 2000, p149), fixed KDE with bandwidth determined using cross-
validation based on maximum likelihood criterion (Brunsdon 1995) and adaptive KDE
with spatially adaptive bandwidths determined using Brunsdon’s algorithm.

Correctness of the parallel algorithms was tested by comparing their results to those of
the corresponding sequential algorithms. Effectiveness of the optimizations was evaluated
by comparing execution time (i.e. elapsed time, or wall clock time) of the optimized
algorithms with that of the non-optimized algorithms. Efficiency of the GPU-parallel algo-
rithm was evaluated by comparing execution time of the GPU-parallel algorithm with that
of the sequential algorithm and the OpenMP-parallel algorithm. Acceleration factor (AF)
was used as an indicator of how much performance improvement a target algorithm
achieves compared against a base algorithm (Tang et al. 2015, Zhang et al. 2016):

AF ¼ Tbase=Ttarget (12)

where Tbase and Ttarget are the execution time of the base algorithm and the
target algorithm, respectively. Scalability of the GPU-parallel algorithm was evaluated
by testing performance of the GPU-parallel algorithm (in terms of AF) on point pattern
analysis tasks of various problem sizes (e.g. different number of points and number of
cells). Recorded execution time included execution time on all stages of the algorithm
except I/O (i.e. read data from disk and write data to disk). The recorded execution time
for the GPU-parallel algorithm included time spent on exchanging data between the
host memory and the GPU device memory as that is part of the computation cost of the
GPU-parallel algorithm. The recorded execution time thus allows fair and holistic com-
parison of the performance of different algorithms. Reported time was averaged on 10
runs of the algorithm. This should suffice to provide a relatively accurate estimation of
the average execution time because devoted computing resources were used to run the
experiments. However, it is prohibitively time-consuming to run some experiments
many times as each run takes tens of hours. For such experiments (e.g. running the
non-optimized sequential algorithm on the test data set in Section 5.3), five runs were
conducted. The mean and standard deviation of the execution time of the multiple runs
were reported for each experiment. Across all experiments, the ratio between the
standard deviation and the mean execution time was smaller than 5%, indicating that
the recorded execution time was relatively stable. AF was computed based on the mean
execution time. The OpenMP-parallel algorithms run on 32 CPU cores (i.e. threads) if not
otherwise specified.

Moreover, the GPU-parallel algorithm was used to conduct spatial point pattern
analysis on a real-world data set to demonstrate how the GPU-accelerated adaptive
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KDE approach can facilitate efficient spatial point pattern analysis in real-world
applications.

5.1.2. Data sets
The California Redwood seedlings data set used to demonstrate the original Brunsdon’s
algorithm (Brunsdon 1995) was also employed to test correctness of the algorithms
implemented in this article. The Redwood data set available from the ‘spatstat’ R
package (Baddeley et al. 2015) contains 62 California Redwood seedling locations
(Figure 6(a)). The expected results of point pattern analysis on this data set are docu-
mented in Brunsdon (1995).

Effectiveness of the optimizations and efficiency and scalability of the GPU-parallel
algorithm were evaluated on simulated random point patterns. A point pattern that is a
realization of the Matérn Cluster Process was simulated using the rMatClust command in
‘spatstat’ R package (Baddeley et al. 2015). Totally, 1,010,518 points were generated
within a unit square by setting the intensity of the Poisson process of cluster centers,
radius of the clusters and mean number of points per cluster to 200, 0.1 and 5000,
respectively (parameters for the rMatClust command). Point patterns of various sizes
were generated by randomly sampling different number of points from this simulated
point pattern (Figure 6(b) shows one example). The unit square study area was dis-
cretized into rasters of various numbers of cells by setting different cell sizes. Point
patterns of various numbers of points in combination with study areas of various
numbers of cells composed point pattern analysis tasks of various problem sizes.
Scalability of the GPU-parallel algorithm was evaluated on these point pattern analysis
tasks of various problem sizes.

The eBird checklists data set (Sullivan et al. 2009, Wood et al. 2011) was used to
demonstrate a real-world application of the GPU-accelerated adaptive KDE approach for
spatial point pattern analysis. eBird checklists are composed of records of locations where
birders conducted birding activities. Records in the contiguous United States over June,
July and August in 2012 were extracted (eBrid 2016). After removing duplicate locations
(e.g. locations with the same latitude and longitude), a point pattern consisting of 78,977
unique checklists locations was constructed (Figure 6(c)). The contiguous United States
study area was discretized into a raster of 4548 × 2847 = 12,948,156 cells (1 km cell size).

Figure 6. Test data sets used in evaluation experiments. (a) The Redwood data set for testing
correctness (n = 62). (b) One of the simulated point patterns (n = 50,000). And (c) The eBird
checklists data set (n = 78,977).
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5.1.3. Computing environment
Experiments were conducted on a computing server running the CentOS 7.2 operating
system. CPUs used for CPU-enabled computing are AMD Opteron 6274 quad eight-core
processor with 2.0 GHz of clock frequency (80KB L1 cache, 2048KB L2 cache, 6144KB L3
cache) and 128 GB of memory. The GPU used for GPU-enabled computing is GeForce
GTX 480 based on Fermi architecture (480 CUDA cores with 1.4 GHz of clock speed, 1.5
GB of global memory, and 177.4 GB per second memory bandwidth).

5.2. Correctness of the algorithms

The GPU-parallel algorithms and the sequential algorithms produced the same results
of point pattern analysis on the Redwood data set. The cross-validated optimal fixed
bandwidth and the (h; α) values for computing optimal adaptive bandwidths
obtained using the GPU-parallel algorithms were fairly close to those reported in
Brunsdon (1995). The slight differences were mostly attributed to the addition of
edge correction in our implementations. The estimated density surfaces (Figure 7)
were consistent with those reported in Brunsdon (1995). Obviously, with the ‘rule-of-
thumb’ fixed bandwidth, the estimated density surface was largely over-smoothed
and thus failed to show any local variation of tree density (Figure 7(a)). The density
surface estimated with the cross-validated fixed optimal bandwidth did capture local
variation of tree density (Figure 7(b)). But it had two limitations: a tendency of
‘spillage’ of density near the boundary of clusters of trees and ‘spiky’ estimates in
less densely clustered areas of trees. The density surface estimated with spatially
adaptive optimal bandwidths (Figure 7(c)) was most reasonable. There was a greater
tendency for sharp edges on the density surface. In areas where a dense cluster of
trees is neighbored by areas with no trees, smaller bandwidths were used to reduce
the ‘spillage’ of density. In areas of sparse trees, greater bandwidths were used to
avoid ‘spiky’ density estimates (Figure 7(d)). The adaptive KDE was the preferred
approach for spatial point pattern analysis of the Redwood data set, which is
consistent with Brunsdon (1995).

Figure 7. Spatial point pattern analysis on the Redwood data set. Density surface estimated with (a)
‘rule-of-thumb’ fixed bandwidth (h = 0.123), (b) cross-validated fixed optimal bandwidth (h ¼ 0:045)
and (c) spatially adaptive optimal bandwidths (h = 0.035, α = 1.47). (d) The adaptive optimal
bandwidths used to estimate density surface in (c).
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5.3. Effectiveness of the optimizations

A data set composed of a point pattern of 50,000 points within a unit square study area
discretized into 400 × 400 = 160,000 cells was used to evaluate the effectiveness of the
optimizations. Profiling of the sequential algorithms reveals that about 83% of the run
time was spent on edge correction factors computation in the naive implementation of
the algorithm (no optimization). The percentage was reduced to about 11% in the
partially optimized implementation (avoiding re-computing edge correction factors). In
terms of execution time (Table 1), avoiding re-computing edge correction factors
accelerated the sequential and parallel algorithms by a factor of about 6.

Avoiding re-computing edge correction factors and using kd-tree indexing to speed
up density estimation at sample points significantly accelerated the sequential and
parallel algorithms by a factor of 28–75. The optimizations brought more acceleration
to the sequential algorithm than to the parallel algorithms. This might be a result of the
additional synchronization overhead introduced in implementing the optimizations for
parallel algorithms (e.g. using atomic operations to update density estimates).

Performance of the non-optimized and optimized adaptive KDE algorithms on the
test data set (n = 50,000, m = 160,000) (execution time was averaged over 10 runs,
except the sequential non-optimized algorithm averaged over 5 runs; time unit in
seconds).

Overall, the two optimizations effectively sped up the algorithms by a factor of tens
and thus could greatly increase the capability of the adaptive KDE approach for point
pattern analysis on very large data sets. The algorithms with full optimization were used
in the remaining evaluations.

5.4. Efficiency and scalability of the GPU-parallel algorithm

5.4.1. Efficiency
5.4.1.1. Comparison with sequential algorithm and OpenMP-parallel algorithm.
Using adaptive KDE for point pattern analysis on the test data set (n = 50,000,
m = 160,000), it took 2.13 s for the GPU-parallel algorithm, 63.63 s for the

Table 1. Performance of the non-optimized and optimized adaptive KDE algorithms on the test data
set (n = 50,000, m = 160,000) (execution time was averaged over 10 runs, except the sequential
non-optimized algorithm averaged over 5 runs; time unit in seconds).

Algorithm
No

optimization

Partial optimization
(avoiding re-computing
edge correction factors)

Full optimization (avoiding
re-computing edge correction
factors and kd-tree indexing)

Execution
time

Sequential Mean 109,840.26 19,348.03 1459.58
Standard
deviation.

1046.94 439.21 41.87

OpenMP-
parallel

Mean 3882.55 641.97 63.63
Standard
deviation

8.97 0.17 1.66

GPU-parallel Mean 60.13 9.88 2.13
Standard
deviation

0.33 0.06 0.05

AF Sequential 1.0 5.7 75.3
OpenMP-

parallel
1.0 6.0 61.0

GPU-parallel 1.0 6.1 28.2
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OpenMP-parallel algorithm and 1459.58 s (about 24 min) for the sequential algorithm
(Table 1). The GPU-parallel algorithm achieved an AF of 685.2 over the sequential
algorithm and 29.9 over the OpenMP-parallel algorithm (Table 3). The GPU-parallel
algorithm significantly accelerated the adaptive KDE approach for point pattern analysis
more than the OpenMP-parallel algorithm did.

The OpenMP-parallel algorithm (running on 32 CPU cores) achieved a speedup
ratio (i.e. AF of OpenMP algorithm over sequential algorithm) of only 22.9 over the
sequential algorithm on the test data set (Table 3), which was far below the ideal
theoretical speedup of 32. This was partly due to the overhead required to manage
threads and shared resources for the OpenMP algorithm. Moreover, the OpenMP-
parallel algorithm did not scale very well with respect to the number of CPU cores
utilized (Table 2; Figure 8). As the number of CPU cores utilized increased, the gap
between the speedup ratio achieved by the OpenMP-parallel algorithm and the ideal
linear speedup was widened (Figure 8(a)) and the parallel efficiency decreased from
1.0 down to around 0.75 (Figure 8(b)) resulting from expensive maintenance of
coherent memories and caches across a large number of CPU cores, known as
‘false sharing problem’ in multiprocessor programming (Torrellas et al. 1994, Zhang
et al. 2016). Thus, it is unrealistic to expect that the OpenMP-parallel algorithm could
match the performance of the GPU-parallel algorithm by simply increasing the
number of CPU cores.

Performance of the OpenMP-parallel adaptive KDE algorithms on the test data set
(n = 50,000, m = 160,000) using different number of CPU cores (execution time was
averaged over 10 runs; parallel efficiency = speedup ratio/number of CPU cores; time
unit in seconds).

Table 2. Performance of the OpenMP-parallel adaptive KDE algorithms on the test data set
(n = 50,000, m = 160,000) using different number of CPU cores (execution time was averaged
over 10 runs; parallel efficiency = speedup ratio/number of CPU cores; time unit in seconds).
Number of CPU cores 1 (sequential) 2 4 8 16 32

Execution time Mean 1459.58 784.20 427.51 222.80 120.56 63.63
Standard deviation 41.87 29.06 10.34 2.70 2.58 1.66

Speedup ratio 1.0 1.9 3.4 6.6 12.1 22.9
Parallel efficiency 1.00 0.93 0.85 0.82 0.76 0.72

Table 3. Performance of the GPU-parallel, OpenMP-parallel and sequential algorithm to conduct
point pattern analysis on the test data set (n = 50,000, m = 160,000) (execution time was averaged
over 10 runs; time unit in seconds).

Algorithm

Fixed KDE

Adaptive KDERule-of-thumb Cross-validation

Execution time Sequential Mean 435.54 967.08 1459.58
Standard deviation 15.16 25.99 41.87

OpenMP-parallel Mean 18.50 40.56 63.63
Standard deviation 0.01 0.26 1.66

GPU-parallel Mean 0.50 1.05 2.13
Standard deviation 0.02 0.01 0.05

AF Sequential/OpenMP 23.5 23.8 22.9
Sequential/GPU 871.1 921.0 685.2
OpenMP/GPU 37.0 38.6 29.9
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5.4.1.2. Comparison with fixed KDE. The GPU-parallel algorithm of the adaptive KDE
approach for point pattern analysis was compared to that of the fixed KDE approach on
the test data set (n = 50,000, m = 160,000) (Figure 9). The GPU-parallel algorithm of both
approaches was also compared to that of the OpenMP-parallel algorithm (Table 3). The
adaptive KDE approach for point pattern analysis was indeed much more computation-
ally expensive than the fixed KDE approach. Using either the fixed KDE or the adaptive
KDE approach for point pattern analysis, the GPU-parallel algorithm accelerated point
pattern analysis tasks by a factor of greater than 680 whilst the OpenMP-parallel
algorithm speeded up the tasks by a factor of less than 25. The GPU-parallel algorithm
was more than 29 times faster than the OpenMP-parallel algorithm. It demonstrated that
GPU-enabled algorithms not only significantly accelerated the adaptive KDE approach,
but also could greatly speed up the general KDE approach for point pattern analysis.

5.4.1.3. Impact of block size. Execution configuration in kernel invocations has
impacts on performance of GPU-parallel algorithms (NVIDIA 2016). As discussed in

Figure 8. Performance of the OpenMP-parallel algorithm for adaptive KDE on the test data set
(n = 50,000, m = 160,000): (a) speedup ratio and (b) parallel efficiency – defined as speedup ratio
divided by number of CPU cores.

Figure 9. Spatial point pattern analysis on the test data set (n = 50,000, m = 160,000). Density
surface estimated with (a) ‘rule-of-thumb’ fixed bandwidth (h ¼ 0:025), (b) cross-validated fixed
optimal bandwidth (h = 0.017) and (c) spatially adaptive optimal bandwidths (h = 0.010, α = 1.088).
The density surface estimated using adaptive KDE captured more local density variations.
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Section 4.3, the number of threads per block (i.e. block size) determines the execution
configurations for launching kernels. The performance of the GPU-parallel algorithm for
adaptive KDE was evaluated on the test data set (n = 50,000, m = 160,000) with different
block sizes (Figure 10). The performance fluctuates and was poorer when block size was
too large or too small. The best performance was reached using 256 threads per block.

It should be noted, however, that the block size leading to best performance of a
GPU-parallel algorithm is highly dependent upon the underlying GPU hardware, the
nature of the algorithm and the characteristics of data set. Thus, an optimal block size
should be mostly determined experimentally on a case-by-case basis. In our case, 256
threads per block seemed to be a reasonable configuration that guaranteed a good
performance of the GPU-parallel algorithm. This block size was thus used in determining
execution configurations for the GPU-parallel algorithm in all experiments.

5.4.2. Scalability
5.4.2.1. Impact of the number of sample points. The impact of the number of sample
points on performance of the GPU-parallel algorithm was evaluated by conducting point
pattern analysis on the simulated point patterns of different sizes (Figure 11). As
expected, execution time of the GPU-parallel algorithm increased as the number of
points increased (Figure 11(a)). Execution time of the GPU-parallel algorithm was com-
pared to that of the OpenMP-parallel algorithm to compute AF (comparing the sequen-
tial algorithm is unrealistic as it takes prohibitively long to complete the point pattern
analysis tasks). Across all test data sets, the GPU-parallel algorithm was about 20–45
times faster than the OpenMP-parallel algorithm. The AF achieved by the GPU-parallel
algorithm over the OpenMP-parallel algorithm decreased as the number of points
increased (Figure 11(b)). The decreasing GPU-over-OpenMP AF might be caused by
the higher synchronization overhead (e.g. atomicAdd operations) across a large number
of GPU threads (the number of GPU threads was the same as the number of points for
the GPU-parallel algorithm; whilst there were always 32 CPU threads for the OpenMP-

Figure 10. The impact of number of threads per block on performance of the GPU-parallel algorithm
for adaptive KDE on the test data set (n = 50,000, m = 160,000) (execution time was averaged over
10 runs; error bars indicate standard deviations).
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parallel algorithm). Yet the GPU-parallel algorithm was still more than 20 times faster
than the OpenMP-parallel algorithm running on 32 CPU cores for point pattern analysis
tasks with a large number of points.

5.4.2.2. Impact of the number of cells. The impact of the number of cells on perfor-
mance of the GPU-parallel algorithm was evaluated by conducting point pattern analysis
on 500,000 points in study areas discretized into various numbers of cells (Figure 12). As
expected, execution time of the GPU-parallel algorithm increased as the number of cells
increased (Figure 12(a)). Across all test data sets, the GPU-parallel algorithm was about
37–50 times faster than the OpenMP-parallel algorithm. The acceleration factor achieved
by the GPU-parallel algorithm over the OpenMP-parallel algorithm increased as the
number of cells increased (Figure 12(b)), indicating that the GPU-parallel algorithm
scales very well on point pattern analysis tasks of a large number of cells.

5.5. GPU-accelerated point pattern analysis on a real-world data set

The GPU-enabled algorithm was applied for point pattern analysis on the eBird check-
lists data set (n = 78,977, m = 12,948,156) using both the adaptive KDE approach and the
fixed KDE approach (Figure 13). Density surface produced by fixed KDE with ‘rule-of-
thumb’ bandwidth showed several large-scale high-density birding hotspots over the
United States. But it failed to reveal fine-scale density variations as the overly large
bandwidth over-smoothed birding locations (Figure 13(a,d)). Fixed KDE with cross-vali-
dated optimal bandwidth produced a density surface that was telling of local density
variations (Figure 13(b,e)). Yet the density surface produced by adaptive KDE was the
most expressive among the three in terms of revealing fine-scale patterns in the data
(Figure 13(c) and (f)). With spatially adaptive bandwidth, adaptive KDE was able to
pinpoint fine-scale high-density birding hotspots more precisely.

Figure 11. Impact of number of points on the GPU-parallel algorithm for adaptive KDE. (a) Execution
time of the GPU-parallel algorithm (averaged over 10 runs; error bars indicate standard deviations).
(b) AF of the GPU-parallel algorithm over the OpenMP-parallel algorithm. Experiments were run with
study areas of various numbers of cells (i.e. 900 × 900 = 810,000, 1000 × 1000 = 1,000,000 and
1100 × 1100 = 1,210,000).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2089



The real-world study again demonstrated that the adaptive KDE approach for point
pattern analysis was much more computationally intensive than the fixed KDE approach
(Table 4). It took about 1.5 h to complete point pattern analysis on the eBird data set using
the OpenMP-parallel adaptive KDE algorithm (running on 32 CPU cores). Performing such
an analysis using the sequential algorithm would be extraordinarily time-consuming
(it would take about 30 h estimated based on a speedup ratio of 20 for OpenMP-parallel
algorithm). Yet using the GPU-parallel adaptive KDE algorithm took only 5.8 min. For either
adaptive KDE or fixed KDE, the GPU-parallel algorithm achieved an AF of greater than 15
over the OpenMP-parallel algorithm (an estimated AF of about 15 × 20 = 300 would be

Figure 12. Impact of number of cells on the GPU-parallel algorithm for adaptive KDE. (a) Execution
time of the GPU-parallel algorithm (averaged over 10 runs; error bars indicate standard deviations).
(b) AF of the GPU-parallel algorithm over the OpenMP-parallel algorithm. Experiments were run with
various numbers of points (i.e. 400,000, 500,000 and 600,000).

Figure 13. Point pattern analysis on the eBird checklists data set (n = 78,977, m = 12,948,156).
Density surface estimated with (a) ‘rule-of-thumb’ fixed bandwidth (h ¼ 84:4km), (b) cross-validated
fixed optimal bandwidth (h = 24.5 km) and (c) spatially adaptive optimal bandwidths (h = 4.2 km,
α = 1.21). (d), (e) and (f) are the zoom-in maps of a small area on the east coast of United States.
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achieved over the sequential algorithm). Given the significant acceleration brought by the
GPU-enabled algorithm, efficient point pattern analysis on large data sets such as the eBird
checklists can be routinely conducted.

Execution time of the algorithms for conducting point pattern analysis on the eBird
checklists data set (n = 78,977, m = 12,948,156) using the adaptive KDE approach and
the fixed KDE approach (execution time was averaged over 10 runs; time unit in
seconds).

6. Discussion

6.1. Impact of the C value

The value of C could impact the accuracy of the estimated density surface and the
execution time of the algorithms (Section 3). To be consistent with the original
Brunsdon’s algorithm (Brunsdon 1995), C = 3 was used for the experiments in this
article. The impact of different C values on the results was examined by running the
GPU-parallel adaptive KDE algorithm on the test data set (n = 50,000, m = 160,000)
under different values of C. The density surfaces estimated under various C values were
compared to that estimated without setting a distance threshold to exclude raster cells
or sample point in computation (equivalent to setting a very large C value) (Figure 14(a);
this was treated as an accurate density surface that reveals the underlying point
pattern). Results are shown in Figure 14.

Under C = 1 or C = 2, the algorithm failed to estimate a density surface that could
reveal the underlying point pattern. The algorithm either did not converge to a positive
α value or did not find a proper α value after going through 30 iterations (the predefined
maximum number of iterations). At a location that is hi or 2× hi distance from the center
sample point, the density value (height of Gaussian kernel surface) is still 60.7% or 13.5%
of the height at the center point (the ratio is 1.1% for 3× hi). The kernel mass over the hi
or 2× hi radius circular neighborhood of the center point is only 39.3.9% or 86.5% of the
total kernel mass (the ratio is 98.9% for 3× hi). Setting C = 1 or C = 2 introduces
significant errors in computing edge correction factors and densities. Thus, the esti-
mated density surfaces were highly inaccurate (the density surfaces in Figure 14(b,c)
were very different from the accurate density surface in Figure 14(a)).

Under C = 3 or greater C values (e.g. C = 6, C = 10), the algorithm converged to a
positive α value in fewer than 30 iterations and estimated similar density surfaces
(Figure 14(d)–(f)) that were consistent with the accurate density surface. Thus, one

Table 4. Execution time of the algorithms for conducting point pattern analysis on the eBird
checklists data set (n = 78,977, m = 12,948,156) using the adaptive KDE approach and the fixed
KDE approach (execution time was averaged over 10 runs; time unit in seconds).

Algorithm

Fixed KDE

Adaptive KDERule-of-thumb Cross-validation

Execution time OpenMP-parallel Mean 2223.29 3261.86 5245.69
Standard deviation 107.25 25.08 175.35

GPU-parallel Mean 30.27 122.73 346.45
Standard deviation 0.27 0.46 16.49

AF OpenMP/GPU 73.5 26.6 15.1
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should always set a C value that is not smaller than 3 (Section 3.1). With a value of C
greater than or equal to 3, the estimated density surface would better resemble the
accurate one with an increasing C value, but the execution time of the algorithm
increased significantly as well (Figure 14(d), (e), (f) and (a)). It should be noted that the
execution time under C = 1 was longer than that under C = 3 because the algorithm
went through a larger number of iterations (this is also why the execution time under
C = 2 was longer than under C = 6). Overall, C = 3 was indeed a reasonable trade-off
between computation cost and accuracy and could be used as the default setting
(Brunsdon 1995). The GPU-enabled algorithm can effectively accelerate the adaptive
KDE by a factor of tens or even hundreds compared to the sequential or OpenMP-
parallel implementations given problems of the same sizes (Section 5.3). But, still the
GPU-enabled algorithm expectedly takes longer execution time on larger-size problems
(Section 5.4). Thus, C = 3 is the recommended setting for large-size problems. In cases
where execution time is less of a concern (e.g. small-size problems, or one is willing to
wait longer), a C value that is greater than 3 can be adopted to obtain more accurate
density surfaces.

6.2 Cost associated with implementing the optimizations

There was computation cost associated with implementing the optimizations (Section
3), which includes computing distances from the sample points to the boundary, sorting

Figure 14. Impact of C value on the estimated density surface and on performance of the algorithm.
(a) Density surface estimated without using C× h as a distance threshold to exclude raster cells or
sample points in computation. (b)–(f) show the density surfaces estimated using C = 1, C = 2, C = 3,
C = 6 and C = 10. The estimated parameters (i.e. h and α) and the corresponding execution time
(average of 10 runs and the standard deviation) are also shown in each figure.
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the sample points based on the distances and building kd tree on the sample points.
The distances were computed in parallel in the GPU-parallel algorithm. Sorting the
points and building kd tree were implemented with sequential routines. When perform-
ing adaptive KDE on the test data set (n = 50,000, m = 160,000), these computations
took up 11% of the total execution time of the GPU-parallel algorithm (3.3% on sorting
points including computing distances first). The percentage decreased on problems of
larger sizes. These computations took up no more than 10% (about the same amount of
time on sorting points and on building kd tree) of the total execution time for experi-
ments in Section 5.4.2, and only 1.4% (1.3% on sorting points) of the total execution
time for the experiment in Section 5.5.

Nevertheless, experiment results have shown that the computation cost associated
with implementing the optimizations was well paid off by the significant acceleration
brought by the optimizations (Section 5.3; Table 1).

6.3. Impact of data exchange between host and GPU

Using the GPU-parallel adaptive KDE algorithm for point pattern analysis on the test
data set (n = 50,000, m = 160,000), data exchange between the host memory and the
GPU device memory took up only 0.03% of the total execution time (i.e. 0.685 ms out of
2.1 s). On problems of larger sizes, the percentage further decreased to negligible (e.g.
data exchange took up less than 0.01% of the total execution time for experiments in
Sections 5.4.2 and 5.5).

If the recorded execution time of the GPU-parallel algorithm did not include time
spent on data exchange between host and GPU and it was used to compute the AF
achieved by the GPU-parallel algorithm (Equation (12)), the resulting AF would be higher
than those presented in Tables 3 and 4. However, for all experiments reported in this
article, data exchange time was included in the recorded execution time for the GPU-
parallel algorithm to compute the AF. This is because data exchange is part of the
computation cost for the GPU-parallel algorithm, and including data exchange time
allows fair and holistic performance comparison between the GPU-parallel algorithm
and other algorithms.

7. Conclusions

This article presented a GPU-accelerated adaptive KDE algorithm for efficient spatial
point pattern analysis on large data sets. Optimizations were designed to reduce
complexity and therefore speed up the algorithm for determining spatially adaptive
optimal bandwidths for adaptive KDE. GPU computing was then exploited to further
accelerate the optimized adaptive KDE algorithm for point pattern analysis.
Computationally intensive tasks involved in bandwidths determination were dispatched
to GPUs and conducted in a massively parallel fashion. Experimental results demon-
strated that the proposed optimizations effectively speeded up the algorithm by a factor
of tens. The GPU-enabled algorithm accelerated point pattern analysis tasks on large
data sets by a factor of hundreds compared to the sequential version of the algorithm.
Compared to an OpenMP-parallel version of the algorithm that leverages computing
power on multi-CPUs, the GPU-accelerated algorithm was still tens of times faster. The
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GPU-accelerated algorithm scales reasonably well on large-scale point pattern analysis
that involves a large number of points, over large areas or at high spatial resolution.

Spatial big data are now becoming ubiquitous (Shekhar et al. 2012, Wu et al. 2014,
Yang et al. 2017a). As the volume of spatial data is increasingly growing, it is urgent to
address the computational challenges associated with spatial big data analytics to keep
pace with the ever-faster-growing data volume (Evans 2013, Wu et al. 2014, Yang et al.
2017a). Computational tools exploiting high-performance computing resources are
under development to deal with the computational challenges posed by spatial big
data processing and analysis (Wang 2010, 2013, Yang et al. 2010, 2017a, 2017b, Aji et al.
2013, Evans 2013, Pijanowski et al. 2014, Wu et al. 2014, Tang et al. 2015, Zhang et al.
2016). These computational tools are collectively establishing a geospatial computa-
tional toolbox that enables fast processing and analysis of spatial big data and could
greatly facilitate geographic knowledge discovery from spatial big data.

Many spatial big data can be perceived as point event data and point pattern analysis as
a mainstream analytical tool for revealing hidden patterns in spatial point data is para-
mount to support geographic knowledge discovery. Given the significant acceleration
brought by the GPU-enabled algorithm presented in this article, adaptive KDE can be
performed efficiently for point pattern analysis on spatial big point data. Point pattern
analysis tasks that once were computationally prohibitive can now be conducted routinely
to identify interesting patterns in a timely manner. The GPU-accelerated adaptive KDE
approach contributes to the computational toolbox for spatial big data analytics.
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